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Abstract. The optical extinction rate of the particle embedded in an absorbing host is defined as a rate of
local energy losses caused by the particle (absorption in the particle volume and scattering by the particle-
matrix interface) referenced to the matrix background. The rate of scattering and absorption by the particle
is calculated via integration of the appropriate Poynting vectors over the particle surface. The explicit
expressions for the optical extinction and scattering rates by the spherical particle are derived. A heuristic
approach to relate the local energy losses to the macroscopic extinction coefficient of the thin absorbing
film with uniformly distributed embedded particles is presented. The method is applied to calculate the
optical response of iron clusters embedded in a fullerite film. The calculated optical extinction coefficient
of the system shows a good agreement with the overall features of experimentally obtained spectra.

PACS. 78.66.Vs Small particles – 78.20.Bh Theory, models, and numerical simulation

1 Introduction

The classical Mie theory [1] allows to calculate the linear
optical response of a single homogeneous spherical parti-
cle embedded in a homogeneous non-absorbing medium.
The spherical shape assumption is in many cases suffi-
ciently near to the reality, especially in the case of nano-
clusters, but can also be removed by introducing depolar-
ization factors. An extension of the Mie theory has been
presented taking into account the possible inhomogeneity
of the clusters [2]. Some authors have thoroughly studied
independent clusters [3], while the effects of the electro-
magnetic interaction between clusters in aggregates have
been considered by Gerardy and Ausloos [4]. In all the
above-mentioned works the matrix, in which the clusters
are embedded, was supposed to be non-absorbing. Never-
theless, the effects of absorption in the matrix can signif-
icantly influence the extinction spectra of the real system
cluster + matrix by changing not only the matrix proper-
ties but also the optical properties of the embedded par-
ticles. Attempts to generalize the Mie theory so that it
would take into account the absorption in the matrix have
been already made by various authors [5–8]. In works of
Mundy et al. [5] and Chylek [6] the optical extinction of
the particle was defined by analyzing the components of
the net energy flow through the surface of a large inte-
gration sphere concentric with the particle embedded in
an absorbing host. An attempt to generalize this method
for the integration sphere of arbitrary size was made by
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Quinten and Rostalski [7]. In all these works, however,
the extinction of the particle was a function of the size
of the integration sphere whereas a physically meaningful
extinction of the particle should depend only on the parti-
cle and the matrix properties. It is not clear also how the
particle extinction is related to what is actually measured
in experiments. An alternative approach to this problem
was presented by Bohren and Gilra in [8]. They have uti-
lized the derivation of extinction by a single particle in a
non-absorbing medium given by van de Hulst [9] and ex-
tended it to the case of an absorbing matrix. This deriva-
tion considers the hypothetic experimental configuration
where the extinction of the particle is defined as the differ-
ence in the energy received by a detector placed at a large
distance from the particle with its receiving area perpen-
dicular to the incident beam in two cases: with and with-
out the particle interposed between light source and detec-
tor. The extinction cross-section obtained by Bohren and
Gilra is a well-defined quantity that depends only on the
particle and the host properties. Nevertheless, in contrast
to a non-absorbing matrix where it is possible to measure
optical properties on large, bulk samples, a strongly ab-
sorbing sample requires its size to be essentially limited
in the direction of the light propagation. Hence, thin films
with incorporated clusters are the systems we deal with. In
this case a far-field approximation used in the derivation
of Bohren and Gilra cannot be applied.

In our work we present a new approach to the cal-
culation of the extinction spectra of separated spherical
homogeneous particles immersed in an absorbing matrix.
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We define the extinction rate of the particle as the rate
at which the energy is removed locally (i.e. in the particle
volume) from the incident beam referenced to the matrix
background. All energy rates are calculated via integration
of the appropriate Poynting vectors over the surface of the
particle. One of the distinctions of our method from the
previous works [5–7] is that our integrating volume for the
calculation of the energy losses coincides with the particle
itself, whereas earlier authors used an integrating volume
either of a large size or of a spherical shape, which makes
it difficult to apply the theory to real systems. In con-
trast, our approach allows us a consideration of the host
of essentially other geometry than a spherical one and of
a limited size, for example thin films with embedded par-
ticles. We get a real rate at which the energy is removed
locally from the incident beam in the volume of the par-
ticle, which provides a quantity for the extinction that
depends only on the particle and the matrix properties.
For thin films with embedded particles an effective ex-
tinction coefficient of the composite system is introduced
and is approximated by the sum of extinction coefficients
of the reference sample (pure matrix) and of the embedded
clusters. The method can be directly applied to realistic
cluster systems, and a comparison of the experimentally
obtained optical extinction behavior of iron clusters em-
bedded in a thin fullerite film with the calculated spectra
will be given.

2 General

Let us consider a single particle, embedded in an absorb-
ing film. The light incident on the surface of the sample
will be attenuated first by reflection and scattering on the
sample surface, then due to the absorption in the matrix,
the absorption in the particle and the scattering from the
interface particle-matrix. The rate at which the energy is
removed from the incident beam defines the extinction of
the system cluster + matrix. Here and further we assume
the incident light beam to be already in the matrix. Thus
we omit all energy losses caused by the scattering on the
two surfaces of the sample and neglect an interaction of
the particle with the back reflected light beams. The en-
ergy losses due to the surface scattering and reflection of
the sample being significant in the case of high-reflecting
thin films need a separate discussion (see, for example,
[10,11]). The effects of the interaction of the secondary
beams with the particle may be suppressed in the case of
a strongly absorbing matrix. We assume also the incident
wave in the matrix to be transversal, so we do not con-
sider the possibility of optical excitation of longitudinal
polarization waves both in the particle and in the matrix.

The total electromagnetic field in the matrix is pre-
sented as a linear superposition of the incident and of the
scattered wave, that describes the influence of the cluster

Et = Ei + Es , (1)

Ht = Hi + Hs . (2)

In contrast to the case of a non-absorbing host the incident
wave is attenuated while propagating in the matrix. In the
following the incident wave implies this non-disturbed by
the presence of the particle wave attenuated only by the
absorption in the pure matrix.

The net energy flow through the surface of the particle
gives the rate of energy absorption in the particle Wa and
is calculated as the integral of the appropriate Poynting
vector over the particle surface S:

Wa = −
1

2
Re

∮
S

[Et ×H∗t ] ·
−→
ds

 , (3)

where
−→
ds is in the direction of an outward normal to the

surface, Re is the real part and the asterisk denotes the
complex conjugate. In the same way, the energy rate of
the scattering by the particle is given by

Ws =
1

2
Re

∮
S

[Es ×H∗s ] ·
−→
ds

 . (4)

A part of this scattered energy will be then reabsorbed
in the matrix, nevertheless, we count this energy as being
scattered by the particle and hence as removed from the
incident beam due to the presence of the particle.

In contrast to the approach of Bohren and Gilra, where
the extinction by a particle is understood as the attenua-
tion of light received by a remote detector, we define here
the extinction rate of the particle Wp embedded in an ab-
sorbing matrix as a difference in the rate of local (i.e. in
the volume of the particle) energy losses from the inci-
dent beam (absorption + scattering) compared to the rate
of energy absorption in the same volume but filled with
the matrix substance:

Wp = Wa +Ws −Wi , (5)

where the energy that would be absorbed in the particle
volume, if it were filled with the matrix substance Wi, is
calculated as

Wi = −
1

2
Re

∮
S

[Ei ×H∗i ] ·
−→
ds

 . (6)

Expression (5) is similar to equation (13) in [5], but here
we use it to define the extinction rate of the particle sub-
system only. It is obvious that the extinction rate of the
particle is not characteristic for the particle only, but also
for the matrix. So, the extinction rate Wp of the particle
can be in some cases negative, for example for voids or
dielectric particles in an absorbing host, but the total ex-
tinction rate of the system particle + matrix given by the
sum of Wa and Ws is always non-negative. Substituting
(3, 4) and (6) in equation (5) we get

Wp = −
1

2
Re

∮
S

{[Ei ×H∗s ] + [Es ×H∗i ]} ·
−→
ds

 . (7)
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If one wants to get the absorption part Wa of the particle
extinction rate, it can be done by calculating Wi and Ws

and using equation (5). It must be kept in mind, that in
equations (3, 4) and (7) all the integrals are taken over
the surface of the particle.

For the particle of spherical shape the exact analytical
solution of the scattering problem can be found. To find
the total field in the matrix, we proceed in a standard
way [1]. The incident wave is assumed to be already in
the matrix, the scattered field is also calculated only in
the sample volume.

In a spherical coordinate system with the origin in the
particle center incident and scattered waves and the elec-
tromagnetic fields in the particle volume can be expanded
in series of spherical wave vector functions mqp and nqp
(see Appendix A for the definition and the principal prop-
erties):

Ei = E0

∞∑
q=1

q∑
p=−q

aqpm
(1)
qp + bqpn

(1)
qp , (8)

Hi = H0

∞∑
q=1

q∑
p=−q

bqpm
(1)
qp + aqpn

(1)
qp , (9)

Es = E0

∞∑
q=1

q∑
p=−q

cqpm
(3)
qp + dqpn

(3)
qp , (10)

Hs = H0

∞∑
q=1

q∑
p=−q

dqpm
(3)
qp + cqpn

(3)
qp , (11)

where E0 is the amplitude of electric field of the incident
wave (only incident light in the pure matrix, not disturbed
by the presence of the particle) in the center of the coor-
dinate system. The superscripts 1 or 3 determine which

of spherical Bessel functions [12] jq(kr) or h
(1)
q (kr) should

be used in the radial part of the generating function for
the spherical wave vector functions. (This choice depends
on the required behavior of the light field at zero or at
infinity.) k = ω

c nm for a matrix with the complex index of
refraction nm. Using the properties of the spherical wave
vector functions (see Eqs. (A.3) and (A.7) in Appendix
A) and the Maxwell equations, the amplitude of the mag-
netic field becomes H0 = ck

iωµE0, where µ is the magnetic

permeability in the matrix. We do not provide here expan-
sions for the fields in the particle, because we will use them
only to formulate the boundary conditions on the particle
surface. Expressions (8-11) are formally identical to those
for a non-absorbing matrix. In contrast to the empirically
introduced radial dependence of the expansion coefficients
in [7], the attenuation of waves caused by absorption in
the matrix is completely described by using the spherical
Bessel functions of a complex variable in the expressions
for the partial waves mq and nq. Coefficients cqp and dqp
are to be found satisfying the boundary conditions on the

surface of the particle and can be calculated [1] (see also
[13], p. 99) as

cqp = Γqaqp , (12)

dqp = ∆qbqp , (13)

where Γq and ∆q are the magnetic and electrical suscepti-
bilities of the q-th order. For a spherical particle of radius
R made of a substance with the refractive index np, em-
bedded in a matrix with the refractive index nm, they are
defined as

∆q = −
ψq(ρ)ψ′q(mρ)−mψq(mρ)ψ′q(ρ)

ξq(ρ)ψ′q(mρ)−mψq(mρ)ξ′q(ρ)
, (14)

Γq = −
mψq(ρ)ψ′q(mρ)− ψq(mρ)ψ′q(ρ)

mξq(ρ)ψ′q(mρ)− ψq(mρ)ξ′q(ρ)
, (15)

where ψq(ρ) = ρjq(ρ) and ξq(ρ) = ρh
(1)
q (ρ) are Riccati-

Bessel functions [12], the prime stands for a derivative
with respect to the argument, m = np/nm is the complex
relative index of refraction in the particle, and ρ = kR is
the complex size parameter in the matrix. It is assumed
that the magnetic permeabilities of the particle and of the
medium are equal to the permeability of vacuum. Having
used the orthogonality of the spherical harmonics on a
surface of spherical particle [14] we get∮

S

[
m(1)
qp × n

(1)∗
lm

]
·
−→
ds =

ψq(ρ)ψ′∗q (ρ)

|ρ|2
δqlδpm , (16)

∮
S

[
m(3)
qp × n

(1)∗
lm

]
·
−→
ds =

ξq(ρ)ψ′∗q (ρ)

|ρ|2
δqlδpm , (17)

∮
S

[
m(1)
qp ×m

(1)∗
lm

]
·
−→
ds =

∮
S

[
n(1)
qp × n

(1)∗
lm

]
·
−→
ds = 0 , (18)

where
−→
ds = R sin θdθdϕ r

r
, δql is a delta-function. It is easy

to get similar expressions for the other vector products

(m
(3)
qp × n

(3)
lm and so on).

Now substituting expansions (8-11, 12, 13) in equa-
tions (4, 7) and integrating over the surface of the particle
with using equations (16-18), one obtains

Ws =
I0

|k|2

∞∑
q=1

q∑
p=−q

{(
|aqp|

2|Γq|
2 + |bqp|

2|∆q|
2
)

×Im
(
−ξq(ρ)ξ′∗q (ρ)

)
−

Im(k)

Re(k)

(
|aqp|

2|Γq|
2 − |bqp|

2|∆q|
2
)

× Re
(
−ξq(ρ)ξ′∗q (ρ)

)}
, (19)
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Wp =
I0

|k|2

∞∑
q=1

q∑
p=−q

{
Re
(
|aqp|

2Γq + |bqp|
2∆q

)
×Im

(
ξq(ρ)ψ′∗q (ρ)− ξ′q(ρ)ψ∗q (ρ)

)
+Im(|aqp|

2Γq + |bqp|
2∆q)

×Re
(
ξq(ρ)ψ′∗q (ρ)− ξ′q(ρ)ψ∗q (ρ)

)
−

Im(k)

Re(k)
Re(|aqp|

2Γq − |bqp|
2∆q)

×Re
(
ξq(ρ)ψ′∗q (ρ) + ξ′q(ρ)ψ∗q (ρ)

)
+

Im(k)

Re(k)
Im(|aqp|

2Γq − |bqp|
2∆q)

× Im
(
ξq(ρ)ψ′∗q (ρ) + ξ′q(ρ)ψ∗q (ρ)

)}
, (20)

where I0 is the intensity of the incident (non-disturbed by
the particle) light in the center of the coordinate system.

We define the extinction cross-section Cp of one parti-
cle embedded in the matrix as

Cp = Wp/I0 . (21)

Such a normalization of the extinction cross-section pro-
vides independence of its value from the particle position
in the sample.

The expressions for extinction and scattering rates in
the case of a non-absorbing matrix follow directly from
(19, 20) by setting Im(k) = 0, and using properties of the
Riccati-Bessel functions of a real argument [12].

3 Applications

3.1 Plane linearly polarized incident wave

Up to this moment we have not fixed the type of incident
wave. We shall consider now the most simple and use-
ful case of a plane monochromatic linearly polarized wave
under normal incidence on the surface of the sample (the
direction of propagation coincides with the positive direc-
tion of the z-axis of the coordinate system with origin in
the center of the particle)

Ei = exE0e
i(kr−ωt) , (22)

where the electrical field is x-polarized, E0 is its amplitude
in the center of the coordinate system and k = (0, 0, k) the
complex wave vector of the incident wave in the matrix.

The normal incidence makes sure that the incident
wave passing through the sample is a plane homogeneous
wave. As before, we assume the incident field to be already
in the matrix. The expansion coefficients for such an inci-
dent wave can be found by using the orthogonality of the
spherical harmonics and the expansion (10.1.47) in [12],

aqp = iq+1[π(2q + 1)]
1
2 δp,±1 ; bqp = paqp . (23)

Substituting (23) in equations (19-20), we get

Ws = I0
2π

|k|2

∞∑
q=1

(2q + 1)
{(
|Γq|

2 + |∆q|
2
)

×Im
(
−ξq(ρ)ξ′∗q (ρ)

)
−

Im(k)

Re(k)

(
|Γq|

2 − |∆q|
2
)

× Re
(
−ξq(ρ)ξ′∗q (ρ)

)}
, (24)

Wp = I0
2π

|k|2

∞∑
q=1

(2q + 1) {Re (Γq +∆q)

×Im
(
ξq(ρ)ψ′∗q (ρ)− ξ′q(ρ)ψ∗q (ρ)

)
+Im(Γq +∆q)Re

(
ξq(ρ)ψ′∗q (ρ)− ξ′q(ρ)ψ∗q (ρ)

)
−

Im(k)

Re(k)
Re(Γq −∆q)

×Re
(
ξq(ρ)ψ′∗q (ρ) + ξ′q(ρ)ψ∗q (ρ)

)
+

Im(k)

Re(k)
Im(Γq −∆q)

× Im
(
ξq(ρ)ψ′∗q (ρ) + ξ′q(ρ)ψ∗q (ρ)

)}
. (25)

The expression for Wi can be obtained from equa-
tion (24) by changing the sign to the opposite, setting both
susceptibilities Γq = ∆q = 1 and exchanging ξq → ψq and
ξ′q → ψ′q:

Wi = I0
4π

|k|2

∞∑
q=1

(2q + 1)Im
(
ξq(ρ)ξ′∗q (ρ)

)
. (26)

3.2 Film with embedded particles

The derivation of the observable extinction given by
Bohren and Gilra [8] cannot be applied to consider a thin
absorbing film with embedded particles because it would
require the construction of the scattered fields outside the
film (to calculate the net energy flow through the surface
of remote detector). The expression for extinction rate ob-
tained in the previous section gives the rate at which the
energy is removed from the incident beam in the volume of
the particle. This declares a concept of a local extinction,
whose relation to the observed physical quantities must
be explained here.

We consider here a film made from a homogeneous ab-
sorbing substance with embedded spherical particles. The
particles are assumed to be uniformly distributed over the
film volume. In an experiment a remote detector registers
the total extinction of the sample as the difference in two
cases: with and without the film interposed between de-
tector and a light source. Here we attempt to obtain this
quantity heuristically via constructing an intensity of the
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transmitted light after passing the sample. We omit all en-
ergy losses due to the reflection on the film surfaces and
neglect the processes of multiple scattering, i.e. the en-
ergy scattered by every particle is considered as removed
from the incident beam. So we can define the transmitted
light as the plane wave, that propagates in the forward
direction and whose amplitude is attenuated both by ab-
sorption in the matrix and by removing the energy via
particle absorption and scattering.

Let the incident wave propagate in the z-direction. In
a differential layer between z and z + dz the energy is re-
moved from the incident beam (let I be the intensity of
the incident beam at z) via extinction by particles and
through absorption in the matrix. The absence of the ma-
trix in the volume of particles is accounted for in the def-
inition of the extinction rate through subtraction of the
matrix background. If the number density of particles in
the film is N , then the number of particles in the layer vol-
ume per unit lateral area is Ndz. Considering a differential
layer makes the energy locally removed from the incident
beam by particles ICpNdz per unit lateral area additive
with the absorption of the pure matrix Iα0dz, where α0

is the absorption coefficient of the pure matrix. The total
intensity loss in the incident beam may be written as

dI = −Iα0dz − ICpNdz , (27)

which gives after an integration over the film thickness

Iout = Iin exp (−αd) , (28)

where Iout is the intensity of the transmitted light af-
ter passing the sample and Iin the intensity of the non-
attenuated incident light after entering but before passing
the film. d is the total film thickness and α the effective ex-
tinction coefficient of the system matrix + particles given
by

α = α0 +NCp . (29)

It is intuitively clear that a consideration of a plane trans-
mitted wave in a layer-after-layer manner requires a large
number of clusters to be present in a differential layer; on
the other hand, considering this layer as a differential one
requires αdz � 1 (αD � 1, where D is the particle diam-
eter would suffice). So for strong absorbing media, where
the intensity of transmitted light can be drastically atten-
uated already after passing through a distance less than a
particle diameter, the exactness of the method presented
here is questionable. Nevertheless, the qualitative descrip-
tion of the extinction spectral features can be obtained,
as is shown in the next section.

If the diameter of clusters is small compared to the
light wavelength, a quasistatic (electrostatic) approxima-
tion is widely used. To check whether it may also be ap-
plied in the case of an absorbing medium, we have cal-
culated the extinction of iron clusters with a diameter of
2 nm embedded in a fullerite matrix using the model pre-
sented here and the expression for the particle extinction
cross-section Cstat

p in the quasistatic approximation,

Cstat
p = 4πR3 Re(k) Im

(
εp − εm
εp + 2εm

)
, (30)
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Fig. 1. Extinction coefficient (NCp) of iron clusters with a
diameter of 2 nm in a fullerite matrix calculated using the
present model and the quasistatic approximation (30). The
volume filling factor of iron was set to 5%.

where the complex dielectric functions of clusters εp (Fe)
and of the matrix εm (C60) are used as suggested in [15].
Equation (30) differs from the usual expression for cluster
extinction in the electrostatic approximation (see Chapt. 5
in [13], for example) only in using a real part of the com-
plex wave number k in the matrix. A comparison of the
extinction (NCp, the number density N corresponds to
the volume filling factor of iron of about 5%) coefficient
spectra calculated using (25) and (30), respectively, is pre-
sented in Figure 1. A great divergence is seen only at
higher energies, which makes the use of (30) justified for at
least a qualitative description of cluster extinction spectra
at low frequencies (high wavelength).

Here a special computer program was written to cal-
culate the optical extinction and scattering rates in equa-
tions (24-26). The numerical calculation of the spherical
Bessel functions of a complex argument made no difficul-
ties under the current state of computing technique and
with using the algorithms described in [16] and [17].
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4 Experimental

The above theory was tested by applying equation (28)
to novel experiments on the system of Fe clusters embed-
ded in a solid C60 film. A new laser ablation/evaporation
source produced the Fe clusters (average diameter of
about 20 nm, determined from TEM pictures of the films)
in a continuous UHV beam. The source is driven by a high
power CO2 laser in a continuous wave mode. Details of the
experimental setup are to be published soon. The sample
preparation and the measurements were done at UHV con-
ditions. Fullerite was evaporated with a rate of 0.04 nm/s
from an additional furnace. A special manipulator allows
the co-deposition of nanoparticles from the beam and the
host material on a quartz substrate, whereas a part of the
substrate is shielded from the cluster beam and is covered
by the pure matrix substance only to provide a reference.
The optical equipment enables the in situ measurement
of the transmission in the UV and VIS range. The thick-
ness d of the sample is approximately 150 nm, measured
by a quartz balance. The thickness of the reference is then
d−δd, where δd takes into account the thickness difference
between the reference and the sample due to the Fe clus-
ters embedded in the sample and absent in the reference.
The transmission of the pure C60 layer (reference) can be
described as

Ir

Iin
= exp [−α0(d− δd)] , (31)

where Ir is the light intensity after passing the reference
and Iin the intensity of the non-attenuated incident light.
α0 is the absorption coefficient of fullerite as mentioned
before. Similarly, the transmission of the sample (Fe clus-
ters in C60) is given by

Iout

Iin
= exp [−(α0 +NCp)d ] , (32)

where Iout is the light intensity after passing the sample.
This yields the following equation for the effective ex-

tinction coefficient of the cluster part only:

NCpd = − log
Iout

Ir
− α0δd . (33)

Both transmissions were measured simultaneously and the
transmission of the sample was referred to the transmis-
sion of the reference, i.e. the first term in the right-hand
side of equation (33) is what the experiment actually gives
as the output. It can be seen from equation (33) that
the measured signal should be corrected to take into ac-
count the thickness difference between the reference and
the sample. For the present evaluation δd was obtained
from the experimentally determined filling factor (5% in
the experiment) of the Fe clusters. Figure 2 shows the un-
corrected and the corrected output of the experiment. The
difference between both curves is also plotted in Figure 2.
The comparison of the calculated (NCpd, the number den-
sity was calculated using the volume filling factor and the
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ω [eV]

Fig. 2. Extinction spectra of iron clusters in a fullerite film:
the measured signal corrected to take into account the thick-
ness difference between the sample and the reference (solid
curve) and the uncorrected measured signal (dotted curve).
The dashed curve shows the difference between the corrected
and uncorrected extinction spectra.

average cluster size) and measured (corrected) spectra is
plotted in Figure 3. There is the cluster extinction coeffi-
cient calculated using the quasistatic approximation also
placed in the same figure. As the figure shows, the diver-
gence between the present model and the quasistatic one
is rather great in this case of clusters of 20 nm in diame-
ter, but the qualitative structure of the spectrum can still
be seen.

Pure fullerite layers show the strong π-interband tran-
sition peaks at 2.8 eV, 3.6 eV, 4.6 eV and 5.6 eV. This
structure is mirrored in the cluster part of the calcu-
lated extinction due to the exchange of matrix material
to iron clusters. As seen in Figure 2, the maxima of the
C60 absorption structure coincide with minima in the cal-
culated and measured (corrected) spectra. These minima
are caused by the dominant third term in the right-hand
side of equation (5) (i.e. the absorption rate in fullerite).
5% of the fullerite in fact absent in the sample volume
filled with iron makes a great difference in the spectra.

It must be noted that the condition αD � 1 men-
tioned in the previous section is actually violated between
4 eV and 5.5 eV (D is the particle diameter), nevertheless
the method gives correct results in a region 4-4.6 eV. Re-
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Fig. 3. Comparison of the calculated extinction spectrum
(NCpd) of iron clusters in a fullerite matrix with the measured
(corrected) spectrum. The dashed curve shows the extinction
spectrum of Fe clusters in C60 calculated in the quasistatic
approximation (30). Also the extinction spectrum of free iron
clusters is plotted (− · ·−). A dramatic difference between the
extinctions of free and embedded Fe clusters is seen.

maining deviations between the experiment and the calcu-
lation are supposed to have several reasons. First, the opti-
cal constants [18] used in the calculations were measured
from solid C60 prepared in a slightly different way than
samples prepared here. Figure 4 shows the measured ab-
sorption coefficient spectrum of the reference compared to
the absorption of fullerite based on these optical constants
from [18]. Second, from other systems (Ag clusters embed-
ded in fullerite [19]) a charge transfer from metal cluster
to the host was observed recently which causes changes
in the optical spectra beyond the Mie theory. This effect
is not a topic of the present paper; it has been discussed
before [19] and will be discussed for the present sample
elsewhere.

Finally, it should be emphasized that the extinction
features of embedded iron particles as seen in Figure 3 are
caused mainly by the frequency response of the matrix
(fullerite) and not by the dielectric function of iron. This
can be demonstrated by calculating the extinction of the
same iron clusters in vacuum. In that case, a quite struc-
tureless spectrum is obtained as also shown in Figure 3.
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Fig. 4. Comparison between absorption coefficient spectra of
a pure fullerite matrix: measured in the experiment and used
in the calculation (based on the data from [18]).

5 Discussion and conclusions

We have presented a new method to calculate the opti-
cal extinction spectra of spherical particles surrounded by
an absorbing medium. Concerning cluster sizes, this the-
ory is as general as the classical Mie theory. In addition a
simplified version based on quasistatic approximation was
checked. The extinction rate of the particle is defined as
the rate at which the energy is removed from the incident
beam via particle absorption and scattering referenced to
the matrix background and is calculated locally by inte-
grating the corresponding Poynting vectors of the electro-
magnetic field over the surface of the particle. This allows
a consideration of hosts of arbitrary shape, thin films for
example. The extinction rate is a function of the particle
size and of the optical properties of both the particle and
the matrix materials only and characterizes the ability of
the embedded particle to scatter and to absorb light from
the incident beam.

The fact that our integration sphere coincides with the
particle itself allows to avoid the introduction of the arbi-
trary parameter (the size of the integration sphere) which
appears in some previous works [5–7] and clears the physi-
cal meaning of the extinction rate defined here. As we will
show in our forthcoming paper [20], the method can be
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successfully used to describe light extinction by particle
aggregates in absorbing media as well.

One of our points of interest was to find a relation be-
tween the extinction rate of the particle and the observable
transmission of the composite sample (film with embedded
particles). In the work of Bohren and Gilra [8] the extinc-
tion of a single particle embedded in an absorbing matrix
was related to what is observed by a remote detector also
placed inside the matrix. The observable value in such an
experiment is the difference in the energy received by the
detector in two cases: with and without the particle in the
matrix, and is not related to the absolute values of energy
absorbed and scattered by the particle. (Actually, these
values cannot be found following the method of Bohren
and Gilra.) Often the sample size may be strongly limited
in the direction of light propagation, so the distance be-
tween the particle and the detector cannot be chosen large
enough for the application of the far-field approximations
of the electromagnetic fields in the vicinity of the detector.

If the particles are uniformly distributed in the film
volume, the propagation of light in such a composite
medium cannot be described in terms of “remote” extinc-
tion. Instead an introduction of the extinction coefficient
may be useful. This coefficient characterizes the compos-
ite medium in the same way as the absorption coefficient
describes homogeneous absorbing media and is often used
as the output in real transmission experiments. In con-
trast to Bohren and Gilra we use the energetic aspect of
extinction: extinction = energy absorbed and scattered
by particles. Here a heuristic concept of a local extinction
is suggested. Under some conditions (Sect. 3.2) an effec-
tive extinction coefficient of the composite medium can be
defined, which provides a relationship between the observ-
able transmission of the film and the particle extinction
rate. The extinction coefficient of the composite system
cluster + matrix is given then as a sum of an absorption
coefficient of the matrix and the extinction coefficient of
the particle subsystem. The method can be directly ap-
plied to cluster systems, and the calculation of the ex-
tinction coefficient of iron clusters embedded in a fullerite
matrix is presented as an example. The experimentally
obtained extinction coefficient is well reproduced in the
general spectral features by the calculation. The obvious
deviations are supposed to be caused by effects beyond the
classical electrodynamics and are not topic of the present
paper.

One cannot directly relate the remote extinction cross-
section defined by Bohren and Gilra with the local extinc-
tion presented in this paper. It should be noted, however,
that these two different approaches may be used to de-
scribe one and the same observable value (the difference
in the energy received by a detector, with and without par-
ticles in the matrix) in two different cases: if the distance
between the particles and the detector also placed inside
the matrix can be considered large enough, the approach
of Bohren and Gilra may be preferable, in any other case
our method may be applied.

The financial support of the Deutsche Forschungsgemeinschaft
is gratefully acknowledged.

Appendix A: Spherical wave vector functions

We have used the expressions for the spherical wave vector
functions as defined in [4]:

[q(q + 1)]
1
2 mqp = ipzq(ρ)

Yqp(θ, ϕ)

sin θ
eθ

−zq(ρ)
∂Yqp(θ, ϕ)

∂θ
eϕ , (A.1)

[q(q + 1)]
1
2 nqp = q(q + 1)

zq(ρ)

ρ
Yqp(θ, ϕ)er

+
[ρzq(ρ)]

′

ρ

∂Yqp(θ, ϕ)

∂θ
eθ

+ip
[ρzq(ρ)]

′

ρ

Yqp(θ, ϕ)

sin θ
eϕ , (A.2)

where zq are the Bessel spherical functions jq or h
(1)
q .

Yqp(θ, ϕ) are the normalized spherical harmonics. The
spherical vector wave functions can be generated as

mqp =∇× (rζqp) , (A.3)

nqp =∇×∇× (rζqp) , (A.4)

where ζqp = zq(ρ)Yqp(θ, ϕ)[q(q + 1)]−
1
2 is the generating

function. The following properties allow to use the spher-
ical wave vector functions as partial solutions of the wave
equation:

nqp =
1

k
∇×mqp , (A.5)

mqp =
1

k
∇× nqp , (A.6)

∇ ·mqp =∇ · nqp = 0 . (A.7)

It has been shown [21] that the system of the spherical
wave functions is orthogonal and complete for transverse
waves.
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